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Rigid Body Displacement Fields of an In-plane-deformable 
Curved Beam Based on Conventional Strain Definition 

Moon Won-joo*, Kim Yong-woo** and Min Oak-key*** 
(Received November 20, 1997) 

To improve the convergence and the accuracy of a finite element, the finite element has to 

describe not only displacement and stress distributions in a static analysis but also rigid body 

displacements. In this paper, we consider the in-plane deformable curved beam element to 

understand the descriptive capabili ty of rigid body displacements of a finite element. We derive 

the rigid body displacement fields of a single finite element under various essential boundary 

conditions when the nodal displacements are caused by the rigid body displacement. We also 

examine the rigid body displacement fields of a quadratic curved beam element by employing 

the reduced minimization theory. 
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1. Introduct ion  

Many investigators have studied in-plane-  

deformable curved beam finite elements to 

improve the convergence and accuracy. Looking 

into their studies, many investigators have been 

interested in the cause and remedies of a stiffness 

locking phenomenon. As a result of these inten- 

sive studies, they have revealed that an inconsist- 

ent assumption on displacement functions pro- 

duces spurious constraints when full integration is 

employed. The locking phenomenon in a static 

analysis is characterized by two typical numerical 

behaviors; one is a much smaller displacement 

than the exact one and the other is the violent 

undulate stress distributions. 
Prathap and Babu (1986) explained how the 

full integration for shear and extensional strain 

energy leads to locking. Kamoulakos (1988) 

explained why reduced integration yields ira- 
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proved results by illustrating a simple example. 

He interpreted reduced integration as a process 

for degenerating a polynomial function ~o its least 

-squares fit by releasing a corresponding kegen- 

dre- l ike polynomial when a least squares fit has 

to be achieved between two functions of different 

order. Min and Kim (1993, 1994, 1995) explained 

the role of a reduced integration from the view- 

point of minimization. They clarified the relation- 

ship amongst spurious constraints, opt imal  

points, and integration order by using the reduced 

minimization theory. 

To ensure convergence to the correct results, 

assumed displacement functions have to satisfy 

certain requirements (Zienkiewicz, 1989). One of 

them is a capabili ty to describe rigid body dis- 

placements. This requirement is said as follows: 

the displacement function chosen should be such 

that it does not permit straining of an element to 

occur when the nodal displacements are caused 

by a rigid body displacement. Basically, the 

requirement needs only to be satisfied in the limit 

as the size of an element tends to zero. However, 

the imposition of the requirement on elements of 

a finite size leads to improved accuracy. Thus, 

based on this concept, we will examine the capa- 

bility of a single element to describe rigid body 
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displacement fields when the nodal displacements 

are caused by a rigid body displacement. 

In this paper, we will consider the same prob- 

lem from a viewpoint of the reduced minimiza- 

tion theory to understand the descriptive capabil- 

ity of rigid body displacements of a finite element. 

For this goal, it is desirable to derive rigid body 

displacement fields of a single finite element 

under various essential boundary conditions 

when the nodal displacements are caused by a 

rigid body displacement. Thus, we will examine 

rigid body displacement fields of quadratic 

curved beam elements by employing the reduced 

minimization theory. The examination will clarify 

the role of  reduced integration. 

2. Strain Def ini t ion of an i n - P l a n e -  
Deformable  Curved Beam 

The energy functional of an in plane-deforma- 

ble curved beam is given by: 

U: �89 f + kGA + mz } ds (l) 

where E is the Young's modulus, A is the cross 

sectional area, G is the shear modulus, I is the 

cross-sectional moments of inertia, k is the shear 

correction factor, & is the extensional strain, 7~ 

is the shear strain,  Zb, is the bend ing  s train,  

and s is the curvilinear coordinate running along 

the neutral axis of a curved beam. 

The conventional strains (Prathap and Babu, 

1986) are defined as 

0 Mb 

Fig. 1 Generalized displacements and unit vectors 
of an in-plane-deformable curved beam. 

du 

dv (2) 

d/~ + x du 
z.b = d s  ds 

where u is a t -d i rec t ional  displacement, y is a 

n -d i rec t iona l  deflection and fl is quoted as a 

rotation of the cross section, as shown in Fig. 1. 

3. Reduced Minimizat ion  Under Rigid 
Body Disp lacements  

The functional of C~ beams(Min 

and Kim, 1994) can be written, in general, as: 

U =  U~ + Uc (3) 

where subscripts U and C denote the uncon- 

strained energy and the constrained energy, 

respectively. These energies Uu and Uc can be 

composed of  several strain energies and are ex- 

pressed as: 

Uv i=1 (Uv)i=~i:l Ci (e,)Zds (4) 

and 

N N f (  Uc:-i~_l(UC)i-i~=lDi ~i)2ds (5) 

where e / s  ( i = l ,  2, 3, ..., M)  are unconstrained 

strains and y/s  ( i :  I, 2, 3, .--, N)  are constrained 

strains; Ci's and D/ s  are appropriate elastic con- 

stants; M is the number of unconstrained strain 

components and N is the number of constrained 

strain components. 

In rigid body displacement fields, the minimiza- 

tion of the functional in Eq. (3) is equivalent to 

minimizing each strain energy since each strain 

energy should be zero: 

f o c~(C~ ( & ) ~ d s ) =  , i = l ,  2, 3, ..-, M (6) 

~(D~['(),i)zds) =0,  i = 1 ,  2, 3, N .Is 

3.1 Minimization of constrained energy 
under rigid body displacements 

If we denote typical constrained strains as 
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?,=p(~e) _~ dQ(~)  
ds 

(8) 
= p ( $ )  ~ d$ dO(, e) 

ds d~ 

where p(~e) and Q(e )  are typical displacements 

defined with respect to element coordinate ~ ( -  1 

<_~e~+l )  and d~/ds=const ,  under uniform 

isoparametric mapping. If the displacements p 

and Q are approximated by a polynomial  of 

degree ( n - l ) ,  they are expressed as: 

n - 1  
p(~e) = k~]_gak~eh (9) 

n 1 

where ak's and bh's are generalized displacement 

coordinates. By using Eqs. (9) and (10), the 

typical constrained strain component is expressed 

as :  

n-2 

r=A*_~e~< + ~ A ~ e  ~ (l 1) 
k = 0  

where Ak's are matched coefficients contributed 

from all the field variables relevant to 7 and A*_I 

is unmatched coefficient that has coefficients only 

partially from the contributing field variables. 

They are expressed as 

A*<=:a~ ~ (12) 

= d~e ( k +  1) bk+, 
A k = a k  . ds 

( k = 0 ,  1, 2, ..., n - 2 )  (13) 

By substituting the strain in Eq. (11) into a 

typical constrained strain in Eq. (7), we attempt 

to make; 

a(Df zZds ) :o ,  k=o ,  l, 9 1(14)  
o ~ a k _  _ _  _ ~ ,  " " ,  ~ z - -  

where D is appropriate constant and we obtain 

f ) ,~J  ds=O, I, 2, 1 (16) j = o ,  Q J m n -  

f z ~ d s = O ,  1, 2, n - 2  (17) j = 0 ,  

Equations (16) and (17) are equivalent to the 

minimization of the constrained energy, (Uc) ,, in 

Eq. (3) when displacements are approximated by 

n-noded interpolation. 

The minimization of the constrained energy by 

Eq. (16) produces the constraints 

A~*_~=0 (18) 
A k = 0  ( k = 0 ,  1, 2, ..., n - 2 )  (19) 

The constraint in Eq. (18) is a spurious con- 

straint that imposes an incompatible constraint 

on the assumed displacement fields (Prathap, 

1985; Prathap and Babu, 1986). The constraints 

in Eq. (19) are true constraints. The minimiza- 

tion by Eq. (17) produces only the true con- 

straints in Eq. (19). We call this kind of minim- 

ization that produces only true constraints 

"reduced minimization'  (Min and Kim, 1994; Kim 

and Min, 1993, 1995). The set of Eqs. (16) or 

(17) are called 'error-moment  equations'. 

In general cases, the reduced minimization by 

the error-moment  equation can be restated as 

follows (Min and Kim, 1994): 

T h e o r e m  1 

When the displacements are approximated by 

complete polynomials of degree ( n - l ) ,  the con- 

strained strain is expressed as: 

7 , = A .  1~,-1+ ~,,-2 .-3 An 2~, + An-3~ + ' "  
+ AI$  + Ao 

where A~*-~ is the unmatched coefficient and Ak's 

( k = n - - 2 ,  n- -3 ,  ..., 0) are matched coefficients. 

Let 

F - - { F ~ = ~  k-l" k = l ,  2, 3, ..., n} 

R = { R h = ~  e~-l"  k = l ,  2, 3, ..., n - - l } ,  and 

W={Wk " k = l ,  2, 3, ..., m} 

The error-moment  equations that minimize the 

constrained strain energy are given for 

i? _ 7Wkd~=O, k = l ,  2, 3, ..., m (20) 

(1) If Wk=F~(where  r e = n ) ,  the n error-  

moment equations produce one spurious con- 

straint and ( n - I )  independent true constraints. 

This is called full minimization. 

(2) If Wk=Rk(where  m n - l ) ,  the ( n - I )  

error-moment  equations produce (n 1) indepen- 

dent true constraints. This is called reduced 

minimization. 

Once a spurious constraint is produced in a 

constraining limit such as KGA>>EI and EA>> 
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EI, the spurious constraint increases the uncon- 

strained energy's stiffness that causes locking and 

very poor convergence (Prathap, 1985: Prathap 

and Babu, 1986). If reduced minimization is used 

for constrained energies, no spurious constraint is 

generated and thus no locking is caused. 

3.2 Minimization of unconstrained energy 
under rigid body displacements 

The reduced minimization of unconstrained 

energy under rigid body displacements can also 

be derived by the same manner demonstrated for 

constrained energy in the previous section. How- 

ever the presence of an unmatched coefficient in a 

discretized unconstrained strain is immaterial 

because it does not lead to locking. Moreover, the 

bending strain of the in plane-deformable curved 

beam under consideration, which is the uncon- 

strained strain, does not have an unmatched co- 

efficient. For  example, consider the conventional 

bending strain in Eq. (2). 

If we assume the displacement as follows: 

n - I  

3(4) ffoC~4 ~ (21) 

u (4) = ~ dk4 k (22) 

then the discretized bending strain is expressed, 

under an uniform isoparametric mapping, as 

n - 2  

Zb = Z Bk4 k (23) 
k = O  

Bk=(k+l)~s(Ck+l+xd~+l), which are where 

matched coefficients. 

By substituting the strain in Eq. (23) into Eq. 

(6), we attempt to make: 

c~ckC~ ( f  c/s)=0, 1, --I  (24) EI Z~ k=0 ,  2, ..., n 

C~(Elfz~ds)=O, k=0,  1, ~ c~d~ - , ' " ,  n - I  (25) 

and we obtain the error moment equations: 

f Zb4 h ds=O, k = 0 ,  1, 2, 2 (26) 

Equation (26) is equivalent to the minimization 

of  the bending energy when /3 and u are approx- 

imated by n-noded  interpolations. 
The minimization of the bending energy by Eq. 

(25) produces the (n -  1) true constraints 

/5'k=0 ( k = 0 ,  1, 2, ..., n - -2 )  (27) 

It should be noted that the additional error-  

moment equation corresponding to k = n - - I  in 

Eq. (27) does not introduce any additional con- 

straints since the additional equations will be 

dependent ones on the set of error moment equa- 

tions in Eq. (26) (Min and Kim, 1994). 

We can obtain the same results for the new 

bending strain energy. Based on the above discus- 

sions, the minimization of bending energy can be 

summarized in parallel with Theorem 1 as fol- 

lows; 

Theorem 2 

When the relevant displacements of bending 

strain are approximated by complete polynomials 

of degree ( n - I ) ,  the bending strain is expressed 

a s  

x~=Bn 14 'z '+Bn-24~-2+B~-a4 n 3+... 

+ B14 + Bo 

where the coefficients ]3k's are matched coeffi- 

cients. 

Let 

F - - { f k - - 4 h - ~ ;  k - - l ,  2, 3, ..., n} 
R = { R k = 4 ~  1: k =  1, 2, 3, ..-, n - 1 } ,  and 

W--{W~ ; k = l ,  2, 3, .--, m} 

The error-moment  equations that minimize the 

unconstrained strain energy are given by 

/~ZbWkd4=O, k : l ,  2, 3, ..., m (28) 

(1) If g2 Rk where m n, (i. e. full minim- 

ization), the n error moment equations produce 

(n -  1) true constraints. 

(2) If Wk--A~k where m - - n - 1 ,  (i. e. reduced 
minimization),  the ( n - l )  error-moment  equa- 

tions produce the same ( n - l )  independent true 

constraints as the full minimization produces. 

3.3 Correspondence between minimization 
types and integration techniques 

There exists a correspondence between minim- 

ization types and conventional integration tech- 

niques, as shown in Table 1. Uniformly full 

minimizat ion(UEM) is defined as the minimiza- 
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Table 1 Correspondence between minimization types and integration schemes. F. M. and R. M. denote full 
minimization and reduced minimization, respectively and F. [. and R. 1. denote full integration and 
reduced integration, respectively. 

~ - - - - - ~ - ~  Type of minimization 
~ n t e g r a t i o n  schemes) UFM (UFI) SRM (SRI) URM (URI) 

Energy type 

Unconstrained 
F. M. (F. 1.) F.M. (F. I,) R.M. (R, I.) 

energy 

Constrained 
F. M. (F. I.) R.M. (R. I.) R.M. (R. I.) 

energy 

Table 2 Number of integration points for a quadratic 

in-plane deformable curved beam element. 

\ Number of 
Integration 

Integration 
Scheme ' \  

Extensional 

Strain 

Shear 

Strain 

Bending 

Strain 

U FI 3 3 3 

URI "~ "~ "~ 

Sill 2 2 3 

tion of each strain energy by the full minimiza- 

tion. Selective reduced minimization (SRM) mini- 

mizes the unconstrained energy by the full minim- 

ization and the constrained energy by the reduced 

minimization. Uniformly reduced minimization 

(URM) is the minimization of each strain energy 

by the reduced minimization. UFM, SRM and 

URM can be performed by using uniformly full 

integrat ion(UFl) ,  selective reduced integration 

(SRI), and uniformly reduced integration, respec- 

tively (Min and Kim, 1994). 

For example, three kinds of minimization of the 

quadratic in-plane-deformable curved beam ele- 

ment can be performed using the corresponding 

integration schemes as shown in Table 2. 

4. Theoretical  Rigid Body 

Displacement Field of  a Single 
Unconstrained Element 

In the previous section, we explained the con- 

ventional strain definition and energy functional 

for curved beam analysis and suggested a reduced 

minimization theory under rigid body displace- 

ment. In this section, we will derive the theoreti- 

cal rigid body displacement fields for the conven- 

tional strain definition using the reduced minim- 

ization theory. 

If the displacements are approximated in natu- 

ral coordinate ( - 1 _ < ~ < _ + 1 )  by an isopar- 

ametric interpolation of degree two 

u=ao+ a~q- a2~ 2 
v = b0+ b t~+  b2~ z (29) 

f l  = c,, + c'~ + c 2 ~  ~ 

then we get the discretized strains in local coordi- 

nate as follows: 

du 
Et  = - - d . q -  - -  x u  

du d~ 
- - - g ] ~ - - d s -  - -  XU 

- - - ' - - ( l l  - \d , ,  
(30) 

= (ya, - xbo) + (2ya~-  ,b , )  ~ -  xb~.  ~ 

d~ ~ ,~ 
~ ' b = - = - - - -  /J ds 

_ dv a4 
d~ d; fl 

\-L,S 
(Jb l  - Co) + ( 2 J b 2 -  oh) 4 - 6 '~  "2 

_ d g .  du 

_ dtL d~ d .  

=d~_(cl+_xal ) . , ! ,  +-~d~_ds_ (c'z+ x a 2 ) .  ~- ~ (32) 

=J(ct+xa~) +2J(c'2+xa~)~ 

where J denotes Jacobian determinant ( J =  d~e/ 

cL~) which has a constant value under uniform 

isoparametric mapping and underlined terms 
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mean unmatched coefficients. If the full integra- 

tion is employed, unmatched coefficients which is 

included in the extensional strain and the shear 

strain produce the spurious constraints. 

For each energy mode, the error-moment  equa- 

tions are given as follows : 

for an extensional strain energy 

/~i~t~e d~=O (34) 

for a shear strain energy 

f ;tTb d ~ 0 (36) 

7b ,, d4 = 0  (37) 

f+l , r~ ~2 d4~=o (38) 

for a bending strain energy 

/ ~ ' z a  d~, 0 (39) 

f ;'zb ~ d~=O (40) 

f+l  4 2 i Zb d ~ = 0  (41) 

�9 Uniformly full integration 

The constraints produced for UFI are obtained 

by using the nine error-moment  equations(Eqs. 

33--41).  The error-moment  equations produce 

the constraints 

a l = a 2 = b o - b l  b2 - - co - - c1=c2-0  (42) 

by which we obtain a rigid body displacement 

field of a single unconstrained element 

Zr - -  (lo 
v- -0  (43) 

3 = 0  

and we also obtain the discretized strain field as 
follows 

r  

7~ = 0  (44) 

xt--O 

�9 Uniformly reduced integration and selective 

reduced integration 

The constraints produced SRI can be obtained 

by using the seven error moment equations (Eqs. 

33, 34, 36, 37, 39, 40, 41) of SRM, and the 

constraints produced for URI can be obtained by 

using the six error-moment  equations(Eqs. 33, 

34, 36, 37, 39, 40). However, the same results are 

produced by Theorem 2. 

The error-moment  equations produce the con- 

straints: 

6Jx 3 x 
al  6 j 2 + x  2 bo, a 2 =  6j2+x2 Co 

6J 3X 2 
bl= 6j2 + x2 Co, b2= 6jZ + x 2 bo (45) 

6Jx 2 3x 2 
c1= 6 f f  + x2 bo, c2= 6 f f  + x2 CO 

by which we obtain discretized displacement 

fields such as: 

, 6Jkbo ~ ,  3XCo e2 

6Jc'o 3x2b0 ~e2 (46) 
v=b0q  6 j 2 + x 2 ~  6 j2+x2  

6Jx2b~ e 3X2C~ 
fl Co 6 j2+x2 , ,  6j2+x242 

We also obtain the approximated strain field as 
follows: 

x3b~ (3~e2_1) 
e t -  6j2 + x2 

X2C0 
7b= 6 j 2 + x  ~ (342-  1) (47) 

Zb = 0  

3. Theoret ieal  Rigid Body 
Displacement  Field of a Single 

Element  Under Various Essent ia l  
Boundary Conditions 

In the previous section, we derived the theoreti- 

cal rigid body displacement fields for the conven- 

tional strain definition using the reduced minim- 

ization theory, in this section, to exemplify the 

theoretical rigid body displacement fields, we will 

derive theoretical rigid body displacement fields 

of a single element subjected to various essential 

boundary conditions, as shown in Fig. 2.The first 

three characters in the parenthesis represent the 

left end boundary conditions and the last three 

characters represent the right-end boundary con- 
ditions. 
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6 

(a) Model I ( G Z F F Z F )  

6 

(b) Model D(GZFZFF) 

(c) Model Ill (ZGFFZF) 

Fig. 2 Numerical test models under rigid body 
displacements (G: given displacement, Z: zero 
displacement, F: free). 

Example 1. Consider Model-  I ( G Z F F Z F )  in 

Fig. 2 when the model is discretized by a single 

quadratic element. Model-  I ( G Z F F Z F )  repre- 

sents a rigid body rotational motion of the curved 

beam with respect to the center of curvature. We 

can obtain the theoretical rigid body displace- 

ment fields by imposing the rigid body displace- 

merit(3) and boundary conditions. 

The boundary conditions of Model-  I ( G Z F F -  

ZF) are given by: 

u = 3  and v = 0  at ~ = - - 1  (48) 
~, 0 at ~ = + 1  

Applying the above boundary conditions to the 

rigid body displacement of a single unconstrained 

element, which was obtained in the previous 

section, we can obtain the displacement field of 

the constrained element. 

If we use UFI,  we can obtain the constraints by 

substituting the boundary conditions in Eq. (48) 

into Eq. (43). It follows that 

a0= c~ (49) 
b0-- Co = 0 

By Eqs. (49) and (43), we obtain the theoretical 

rigid body displacement fields for the conven- 

tional strain definition as follows: 

If  we use URI or SRI, Eq. (46) yields the 

following simultaneous equations by using the 

boundary conditions in Eq. (48): 

6Jx 3x .. 
~ I ~= , 3 = a o  6 jZ+x  2 bo+ 6 j T ~ c o  

6J 3x 2 
vl~= l = O = b o  6j2+x2Co 6j2q x2bo (51) 

6J 3x 2 
v I ~ : ~ l = O = b o + ~ C o -  6 j2+x2  b0 

which produce the constraints: 

ao=8 (52) 
b o -  c0-- 0 

By Eqs. (52) and (46), we obtain the theoretical 

rigid body displacement fields for the conven- 

tional strain definition as follows: 

U := 
V=0 (53) 

f l = 0  

From Eqs. (50) and (53), it can be seen that 

the theoretical rigid body displacement fields 

using UFI and those using URI or SR! show 

same results in the case of Model-  I ( G Z F F Z F ) .  

Example 2. Consider Mode l - I I  ( G Z F Z F F ) i n  

Fig. 2 when the model is discretized by a single 

quadratic element. Mode l - I I  ( G Z F Z F F )  repre- 

sents a translational motion in the t-direction. 

The boundary conditions on Mode l - I I  (GZFZ-  
FF)  are given by: 
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u=6`  and v = 0  at ~e=--I  (54) 
u = 0  at $ - - + 1  

Applying the above boundary conditions to the 
rigid body displacement of a single unconstrained 
element, we can obtain the displacement field of 
the constrained element. 

If we use UFI, the rigid body displacement 
fields(Eq. 43) have only one unknown(a0). 
However, rigid body displacement fields that 
satisfy the boundary conditions at the same time 
do not exist, as the number of boundary condi- 
tions is 3.This implies that the rigid body dis- 
placement of Model - I I  ( G Z F Z F F )  by the 
reduced minimization theory can not be described 
by a single quadratic element when UFI is used. 
On the contrary, if we use URI or SRI, the rigid 
body displacement fields(Eq. 46) have three 
unknowns(a0, b0, Co), which are compatable to 
the number of boundary conditions. 

If we use URI and SRI, Eq. (46) yields the 
following simultaneous equations by using the 
boundary conditions in Eq. (54). 

[ ~ 6jx 3x c~ 
u I ~= 1 6` aO 6j2+x2 b o + ~  u 

6Jx - _ 3x (55) I ~_+,=o ~o+ 6 j ~ 7 7 O o - - ~ c o  

6j 3x z I ,~_-l=0=b0 6j2+x 2 Co 6j2+x 2 bo 

which produce the constraints: 

9 j  ~ -- X 2 
ao= 12J 2 

b o :  6j2-r- ":r 
12Jx (56) 

(6J2 + x 2) (3J2- x 2) 6  ̀
Co 36j2x 

By Eqs. (56) and (46), we obtain the theoretical 
rigid body displacement fields for the conven- 
tional strain definition as follows: 

[ 9J;2~x2 l 3J2--X 2 ] 
u 2~  12J 2 e2 3 

v = [  6 j2+x2 3JZ-x'2 (57) 

fl=[t_ (6j2 -- x2)36j2x (3J2 x2) ~ 2  s x  

4 Z ( 3 j 2 -  z 2 ) 1 2 J  2 ~2](~ 

Example 3. Consider Model I II(ZGFVZF) in 

Fig. 2 when the model is discretized by a single 
quadratic element. Model - I I I (ZGFFZF)  repre- 
sents a translational motion in the n direction. 
The boundary conditions of Model-I I I (ZGFF- 
ZF) are given by: 

u = 0  and v=6` at  ~ = - - 1  (58) 
u = 0  at ~ +1 

Applying the above boundary conditions to the 
rigid body displacement of a single unconstrained 
element, we can obtain the displacement field of 
the constrained element. 

For the same reason as in Example 2, the rigid 
body displacement of Model- I I I (ZGFFZF)  by 
the reduced minimization theory can not be de- 
scribed by a single quadratic element when UFI is 
used. 

If we use URI and SRI, Eq. (46) yields the 
following simultaneous equations using the 
boundary conditions in Eq. (58): 

6Jx 3x c~ u ] ~_ i 0 = a o  6j2+x2 bo+ 6j2+x2 u 

6J 3x 2 
v l ~: 1=6` bo 6j2+x2CO 6j2+x 2 bo (59) 

6J 3x 2 
Z.' I ~=+1:0= b 0 4 - ~ c 0  6j2+x2 b0 

which produce the constraints: 

a x (9J 2 -  x 2) 
0 47~3~=_~1 6̀  

6J 2 + x 2 
b0= 4j (3j2 x2) 6̀  (60) 

6J 2+X2 6  ̀
Co = 12J 

By Eqs. (60) and (46), we obtain the theoretical 
rigid body displacement fields for the conven- 
tional strain definition as follows: 

x [ (9 j2_  z.2) + 6 j 2 e  
U = 4J (3J 2 - x 2) 

-- (3]2-- x 2) se 2] 6  ̀

1 
v = 4J (3J 2 x 2) [ (6J2 + x2) - 2 (3J 2 -  x 2) 

3x2~ 2] 6  ̀ (61) 

/3:F L 6J2@ X2 3JX2 X 2 2 
12j2 2(3j~_x2) ~ + 4 j ~  ]6" 
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R )  
SECTION A-A 

Fig. 3 Geometry of an in plane-deformable curved 
beam. 

Table  3 E x a c t  solutions of  three test  models under 

rigid body d i sp lacements  

M O D E L  E x a c t  So lut ions  

u-c~ 
M O D E L -  I 

~,=0 
( G Z F F Z F )  

u = ~ cos 0 
M O D E L  II v = - ~ sin 0 
( G Z F Z F F )  8 

/3= 1~' cos 0 

u - -~  sin 0 
MODEL-III v = 3" cos 0 

. ( Z G F F Z F )  /~ = --/~ s m  0 

0.12 

• ,  0.1 

0.08 
| 
.~" 0.06 
lo 

0.04 

~0.02 

0.12 

A 0.1 

1[ 

i 0 .08  

. ~  0 .08  
lo  
m 
t~ 
.~ 0,04 

~0.02 

Fig. 4 

- -  E x a c t  ' " - .  �9 

�9 UFI " " ' ~  
• SRI . . . . . .  

0 2 ' 0  ' ' 5 ' ' ' 1 3 0  4 0  0 6 0  7 0  8 0  9 0  

Angle O (degree) 

(a) Model I] (GZFZFF) 

- E x a c t  1 

�9 I . . . . . .  

- - -  2 :  ..................... 

. 1 _ _ _  i i i i L i I 

10 2 0  3 0  411 5 0  6 0  7 0  8 0  

Angle O (degree) 

(b) Model I[I(ZGFFZF) 

Distribution of extensional displacement (u) 
using a single element. 

6. Numerical  Test 

To prove the validity of theoretical predictions 

by the reduced minimization theory, we perform 

numerical tests when considering the capability of 

a single quadratic in-plane-deformable curved 

beam element to describe rigid body displace- 

ments. To do this, the theoretical rigid body 

displacements obtained by the present theory are 

compared with exact ones and finite element 

solutions. The test models used are shown in Fig. 

3, of which the opening angle is :r/2 with the 

square cross section. The radius of the curvature 

is 5 m, width of cross section is 0.1 m, and the 

imposed rigid body displacement (3) is 0.1 m. 

The material properties of a curved beam are as 

follows: 

Young's modulus : E=2 .07  • 10~tN/m z 

Shear modulus �9 G--~  (1E+u) = 8.023 • 101~ z 

Poisson's ratio : u : 0 . 3  

5 
Shear correction factor : k : :  6 

To judge the accuracy of theoretical predic- 

tions, we derive the exact solutions of rigid body 

displacement fields of the test models using a 

transformation matrix. The exact rigid body dis- 

placements are shown in Table 3 and 1/R is equal 

to the constant curvature(x) of the test models. 

To examine the capability to describe rigid 

body displacements in relation to the integration 

schemes, we perform numerical tests for the three 

test models shown in Fig. 2 by using UFi,  SRI 
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-0.0 . . . . . . . . .  

-0.04 "':::~,.. . . . . . . . . . . . .  

~ I :%. 
[ -",',"~ I "<'-,-2 ........ 

" -0.1~ +R,v..h,oq I . ~  
/ �9 uR j ........ 

.0.14 / | i _ ~  i_ I _ _ ,  i. = _ _  = 
0 10 20 30 40 50 80 70 80 90 

Angle 6 (degree) 

(a) Model II(GZFZFF) 

-0.005 

"Io -0.01 

._~ 
I -0.015, 

-0.0,~ 

-0.025 ~ ~ ~ I 0 i i J 
1 20 3 40 50 80 

Angle e (degree) 

(a) Mode l -  11 ( G Z F Z F F )  

710 i 8O 90 

0.12 

0.1 

0.08 
g 
~ 0.06 

~ 0.04 

0.02 

Fig. 5 

0 
0 

- ~ . ~  "" ' . . ~  , 

�9 ~ ,  " . . . ~  

• SRt ' . . : : ~  

7 . . . . . . .  % 
10 23 30 40 50 60 70 80 90 

Angle O (degree) 

(b) Model- Ill (ZGZFZF) 

Distribution of deflection (v) using a single 
element. 

- 0 . 0 ~  . . . . .  

A ' - ,  

i r _ r i 

-0.o% 1~0~0 ;o ,o 53 60 ,o ,'o ,o 
Angle 0 (degree) 

(b) Model [ ] I (ZGZFZF) 

Fig. 6 Distr ibut ion o f  rotat ion (,9) using a single 

element. 

Table  4 Distr ibut ion of  displacements  of  Model  I ( G Z F F Z F )  discretized by a single element. 

Displacement  

Convent iona l  

Strain 

Defini t ion 

Angle  

(Degree) 
Exact 

Present 
Theory 

Numerical  Solution 

UFI  SRI 

0 0.1 0.1 1 .0000E-01 1.0000E 0l 

45 0.1 0. I 1.0000E - 01 1.0000E -- 01 

90 0.1 0.1 1.0000E --01 

0.0 

I,O000E 0 I 

O.O000E ~o0 0.0 0.0000E + 00 

45 0.0 0.0 2.7756E 17 --5.1023E 15 

90 0.0 0.0 0.0000E + 00 0.0000E + 00 

0 0.0 0.0 1.4610E 17 -2.550-7E 15 

45 0.0 0.0 0.0000E + 0 0  -- 1.7347E -- 17 

90 0.0 0.0 -- 1.2006E - 17 2.6294E - 15 

and  U R I .  T h e  resul ts  a re  p lo t t ed  in Figs .  4 - - 6 ,  

xvhere we d o n ' t  d o  no t  p r e sen t  the  f in i te  e l e m e n t  

s o l u t i o n s  o b t a i n e d  by UR1 s ince  they  are  equa l  to  

the  s o l u t i o n s  o b t a i n e d  by SRI.  W e  list the  resul ts  



Rigid Body Displacement Fields oJ" an In plane-deformable  Curved Beam Based ... 471 

of Model- I (GZFFZF)  in Table 4 because they 

agree with the theoretical rigid body displacement 

fields by the reduced minimization theory. The 

exact solutions to each model are given in Table 

3, and the present solutions by reduced minimiza- 

tion theory for each model are given in the previ- 

ous section. In Figs. 4~6 ,  the solid line represents 

the exact solution, the symbol '+"  represents the 

reduced minimization's rigid body displacements 

which are derived in examples, i. e. Eqs. (57) and 

(61), the symbol "n"  represents the numerical 

solution obtained by UFI, and the symbol ' •  

represents the numerical solution obtained by 

SRI. The symbols "+ '  and ~• are overplotted. 

Looking at the results in Figs. 4 ~ 6  and Table 4, 

we see the following facts: 

1. The theoretical rigid body displacements of 

Mode l - I  (GZFFZF)  agree with both the 

exact ones and finite element solutions, 

irrespective of the integration schemes used. 

2. The finite element solutions of Model-I I  

(GZFZFF)  and ModeI -1 I I (ZGFFZF) ,  

which are obtained using URI and SRI, 

agree with the theoretical ones obtained by 

the reduced minimization theory and are 

close to the exact ones. 

3. The finite element solutions of Model II 

(GZFZFF)  and M o d e I - I I I ( Z G F F Z F ) ,  

which are obtained by using UFI, deviate 

from the exact ones. 

From the above tests, we see that the finite 

element employing URI or SRI has a superior 

capability in describing the rigid body displace- 

ments to the element employing UFI. 
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Distribution of displacements at 0--;v,/2 with respect to the rigid body displacement (8) which is using 
a single element. 
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We perform another numerical test for Model 

I I ( G Z F Z F F )  and M o d e I - I I I ( Z G F F Z F )  to 
examine the displacement distributions in terms 

of  the magnitude of imposed rigid body displace- 

ments (#). In Fig. 7, we present the numerical 

results at 0=7 r /2  for displacements except con- 

strained displacements by boundary conditions. 

Figure 7 depicts the deflection of Mode l - I I  

( G Z F Z F F ) ,  the extensional displacement of 

Model-III  ( Z G F F Z F ) ,  and the rotation of Model 

- I I ( G Z F Z F F )  and Model I I I ( Z G F F Z F ) .  In 

this numerical test, we employ the UFI and SR1. 

The magnitude of Fig. 7 shows that the SRI 

produces results very close to the exact ones, 

independent of the imposed rigid body displace- 

merit(#).  On the other hand, the UFl  shows that 

the absolute error tends to increase as the imposed 

rigid body displacement (~) increases. 

From the above numerical results, we see that 

the URI or SRi can describe the rigid body 

displacements correctly, independent of the mag- 

nitude of an imposed rigid body displacement 

(c~). We can also evaluate the descriptive capabil- 

ity of rigid body displacements of a finite element 

without numerical tests. 

7. Conclusion 

To evaluate the descriptive capabili ty of rigid 

body displacements of a finite element, we have 

derived the theoretical rigid body displacement 

fields of a single in plane-deformable curved 

beam element based on the conventional strain 

definition under certain boundary conditions. To 

do this, we have suggested a theoretical method, 

which is called "reduced minimization under 

rigid body displacements." To compare the 

results obtained by using the theoretical method 

with numerical ones, various numerical tests for 

three models with different boundary conditions 

are carried out. The theoretical rigid body dis- 

placement fields by SRI can be obtained for all 
models using the reduced minimization theory 

and distributions of displacement agree with the 

numerical results. However, those by UFi  cannot 

be obtained except for a certain model. The 

proposed method can be used to evaluate the 

descriptive capabili ty of rigid body displacements 

of a finite element without numerical tests. 
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